

Physical Activity and Health Branch

Vision

- Active People in an Activity-Friendly World Mission
- Understand and Promote Physical Activity to Enhance Health and Quality of Life

Guiding Principles

- We are a science-driven organization.
- We Focus on population-based public health research and programs. — We are accountable to our public health constituents.
- We conduct our work with integrity and follow ethical standards.

	Mode					
Country	Bicycle	Walking	Public Transport	Ca		
Netherlands	30	18	5	45		
Germany	12	22	16	49		
England	8	12	14	62		
Italy	5	28	16	42		
Canada	1	10	14	74		
TICA	1	0	3	84		

ACES Research Agenda • Long Standing Interest in Policy and Environmental Interventions • Panel Discussion on Policy and Environmental Actions to Promote Physical Activity • Participants: urban planning, transportation, architecture, criminology, social ecology, environmental health • Recommendations • Develop tools, find data, determine relationshipscollaborate • Advocate: Ped Friendly design, infill/density. limit parking, job housing mix, developer incentives, zoning standards...

ACES Active Community Environments

Research Practice and Policy

that support physical activity in geographic areas, generally several square kilometers in area or more. Examples of interventions include

- Infrastructure projects to improve continuity and connectivity of streets, sidewalks, and bike lanes
- Local zoning regulations and roadway design standards that promote destination walking and co-location of residential, commercial, and school properties

Community Guide Recommendation:

- The Task Force *recommends* community-scale urban design and land use policies and practices to promote physical activity based on sufficient evidence of effectiveness.
- Evidence was considered sufficient based on: Sufficient effect size
- Consistency of results: ↑ levels of PA associated with improved continuity and connectivity of streets and sidewalks: ↑ levels of PA associated with local mixed-use zoning and roadway design that promotes destination walking

Other supporting evidence

- Dose-response across levels of exposure Face validity
- Other potential benefits include \uparrow : air quality, social capital, consumer choice, and green space

Street-scale urban design and land use policies and practices

Defined as: Urban design and land use policies that support physical activity in small geographic areas, generally limited to a few blocks.

Intervention Characteristics: policy instruments and practices such as

- Implementation of improved street lighting
- Infrastructure projects to:
- · Increase ease and safety of street crossing
- · Ensure sidewalk continuity
- Introduce or enhance traffic calming
- · Enhance aesthetics of the streetscape

Community Guide recommendation:

The Task Force *recommends* use of street-scale urban design to increase physical activity based on sufficient evidence of effectiveness

- Evidence was considered sufficient to make a recommendation based on sufficient effect size and consistency of results.
- Other supporting evidence
- Face validity
- Other potential benefits such as: \uparrow social capital, \downarrow stress, \uparrow green space, and \downarrow crime

Physical Activity and the Environment Major Issues for Public Health

- Define/measure
- Independent Variables, Dependent Variables
- Determine Associations
- Determine "Causation"
- Determine Solutions
- Determine Benefit (Is it HEPA, for Whom?)

ACEs Research: Research, Practice and Policy Evidence – Harvard Youth Youth – North Carolina Community – South Carolina – Ga Tech Community - Washington Seniors - Western Australia Community – Rutgers Health Outcomes

Relationship Between Urban Sprawl and Physical Activity, Obesity, and Morbidity

> Ewing, Tom Schmid, Rich Killingsworth, Amy Zlot, Stephen Raudenbush Reid E American Journal of Health Promotion (2003) Vol. 18, No. 1, pages 47-57

• To determine the relationship between urban sprawl, health, and health-related behaviors using a cross-sectional analysis

Hypotheses

Residents of sprawling places:

- (1) walk less
- (2) weigh more
- (3) have a higher prevalence of health problems linked to physical inactivity

Health Measures:

Behavioral Risk Factor Surveillance System (BRFSS) 1998-20001

- Leisure time physical activity (any amount, recommended levels, minutes walked in past month)
- Obesity
- Body mass index (BMI)
- Hypertension
- Diabetes - Coronary heart disease (CHD)

Control Measures:

- Gender
- Age
- Race or ethnicity
- Education
- Smoking
- Diet (fruit or vegetable consumption)

County Sprawl Index:

- County-level indices based on¹:
 - Residential density
 - Street accessibility
- Scores ranged from **352** for compact Manhattan to **63** for sprawling Geauga County (outside of Cleveland, OH)

Data from US census, USDA Natural Resource Inventory, and Census TIGER files. Estimated for 448 metropolitan counties in the U.S.

Density

- Persons per square mile
- Percentage of county population living at low suburban densities (i.e. less than one housing unit per acre)
- Percentage of county population living at moderate to high suburban densities (i.e. 8 housing units per acre)

County	Sprawl Index Score			
Geauga (Cleveland, OH)	63.12			
Isanti (Minnesota)	70.12			
Hanover (Richmond, VA)	74.97			
McHenry (Illinois)	100.08			
Delaware (Philadelphia, PA)	125.34			
Cook (Illinois)	150.15			
Suffolk (New York)	179 37			

209.27

352.07

San Francisco (California)

Manhattan (New York)

Sprawl in the United States

Results People living in sprawling counties:

- Have higher body mass indexes
- Are more likely to be obese
- Are more likely to have high blood pressure
- Walk less in their leisure time

	Results		
	County Sprawl Index		
Outcome	Coefficient	t	р
Minutes walked*	0.275	2.95	0.004
BMI	-0.00344	-2.84	0.005
Obesity	-0.00212	-4.24	< 0.00
Hypertension	-0.00119	-2.37	0.018

Results: Minutes Walked

• Every 50-point increase in the sprawl index is associated with **14 minutes less** leisure walking per month

Results: BMI

• Every 50-point increase in the sprawl index is linked to a **0.17 increase** in BMI

• This increase translates into approximately **one pound** for an average person

Results: Obesity

 Every 50-point increase in the sprawl index is associated with a 10% increase in the odds a county resident will be obese

Results: Hypertension

• Every 50-point increase in the sprawl index is linked to a **6% increase** in the odds a county resident will have high blood pressure

County	Sprawl score	Expected BMI	Expected weight in lbs. for a 5'7" person
Geauga (Cleveland, OH)	63.12	26.23	167.5
Isanti (Minnesota)	70.12	26.20	167.3
Hanover (Richmond, VA)	74.97	26.19	167.2
McHenry (Illinois)	100.08	26.10	166.6
Delaware (Philadelphia, PA)	125.34	26.01	166.1
Cook (Illinois)	150.15	25.93	165.5
Suffolk (New York)	179.37	25.83	164.9
San Francisco (California)	209.27	25.72	164.2
Manhattan (New York)	352.07	25.23	161.1

The influence of sprawl on

woight1:

1. McCann, B. and Ewing, R. Measuring the Health Effects of Sprawl. Smart Growth America, 2003.

Conclusion

• Urban form could be significantly associated with some forms of physical activity and some pertinent health outcomes

Some study limitations (and hence, future work)

- Study shows association, not causality (cross sectional study)
- Leisure time activity is only one source of physical activity
- Statistical analysis could not account for BRFSS' complex sampling design
- Relationship between sprawl and health outcomes probably not linear
- Need better, more microscale, environmental variables

		•		
ntrolling				
				Mixed Use =129
LogBMI				Int. Density =1
		(4430) P000	(4430) P000	Composite - 5.12
	P= . 1249 (4430) P= .000		P= .000 .5591 (4430) P= .000	

Corr	Correlations between PA and Residential Density, Land Use Mix and Intersection Density					
	» Res.Density	Mix	Inter Dens			
PA	.179**	.145**	.111**			
Res Dens		.496**	.586**			
Mix			.356**			

Logistic Regress	Logistic Regression to Explain 30 Minutes of Moderate of PA				
Construct	р	odds			
• Gender	.42	.82			
• Age	.04	.98			
• Ed	.57	1.17			
• Ethnic	.17	1.57			
• Walkability qu	 Walkability quartile 				
- 2	.19	1.63			
- 3	.0.	5 2.02			
- 4	.0	1 2.40			